2-Metylthiazolium Salts as 1,4-Dinucleophiles. Thiazolo[3,2-a]pyridinium Salts from Westphal Condensation

C. Galera, J. J. Vaquero, J. L. Garcia Navio, J. Alvarez-Builla*

Departamento de Quimica Organica, Universidad de Alcalá de Henares, Madrid Spain Received February 25, 1985

Condensation of 2-methylthiazolium salts with 1,2-dicarbonyls in the presence of base, yielded thiazolo-[3,2-a]pyridinium derivatives. Results with different substrates are discussed.

J. Heterocyclic Chem., 23, 1889 (1986).

Westphal condensation [1,2] (Scheme 1) allows the synthesis of quinolizinium derivatives from N-substituted 2-methylpyridinium salts with 1,2-diketones. After additions from several authors [3-9] the method seems to be simple and extremely versatile. Extension of the general process is being studied by our group as the method could provide a way to straightforward preparation of quaternary nitrogen bridgehead heterocycles of great chemical and biological interest.

In addition to a previous communication from Westphal [10], our group tried the synthesis of thiazolo[3,2-a]pyridinium salts by building up the pyridinium moiety, instead of using the opposite traditional alternative [11].

2-Methylthiazolium salts used as starting materials were prepared by quaternization of 2-methylthiazole derivatives (Table 1) with phenacyl bromide and ethyl bromoacetate. Subsequent condensation of compounds 1 to 8 with 1,2-dicarbonyls such as diacetyl, benzyl, 3,3'-dinitrobenzyl, 9,10-fenantroquinone and 1,2-acenaphtoquinone allowed the desired thiazolo[3,2-a]pyridinium salts to be isolated, the best yields being obtained by using triethylamine as base under the reaction conditions indicated in Tables 2-5.

As it has been previously observed [9], aprotic solvents, as acetone or even acetone/ethanol mixtures, precluded the condensation of the bicyclic substrates as 7 or 8 due to the formation of the highly stabilised anhidrobase. More polar solvents, in contrast, increase the contribution of the betaine form with charge separation (Scheme 1).

Scheme 1

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

In contrast to that previously observed for pyridinium substrates [8], 1-phenacyl derivatives did not show any trace of intramolecular cyclization product, as observed by ¹H nmr on the crude reaction mixture. Additional experiments, however, showed that intramolecular cyclization took place when compounds 1, 3, 5 and 7 were refluxed in ethanol in the presence of triethylamine without dicarbonyl, producing previously described pirrolo[2,1-b]thiazoles

Table 1

Substituted-2-methylthiazolium Salts

Compound	R	R4	R ⁵	Reaction time (hours)	Yield (%) [a]	Mp (°C) [b]	Lit mp (°C)
1	COC,H,	CH ₃	H	5	83	225-226	159-160, [c], 235 [d]
2	CO,C,H,	CH,	Н	6	96	203-205	-
3	COC.H.	CH,	CH,	5	70	214-216	203-204 [c]
4	CO,C,H,	CH,	CH ₃	7	50	170-171	
5	COC,H,	C_6H_5	Н	64	72	220-222	_
6	$CO_2\mathring{C}_2\mathring{H}_5$	н̈́		No reaction after	72 hours		
7	COC.H.		(CH = CH) ₂ -	21	57	223-224	
8	$\mathbf{CO_2}\ddot{\mathbf{C_2}}\ddot{\mathbf{H_5}}$		$(CH = CH)_2$	22	50	199-201	190-191 [e]

Table 2
Thiazolo[3,2-a]pyridinium Salts from 1 and 2

Compound	R	R¹	R ¹	R²	Solvent	Reaction time (minutes)	Yield (%) [a]	Mp (°C, dec) [b]
9	COC ₆ H ₅	CH ₃	CH ₃	Н	Acetone	20	78	304-306
10	COC,H,	C ₆ H ₅	C ₆ H ₅	H	Acetone-ethanol	120	27	298-300
11	COC ₆ H ₅	3-O ₂ N-C ₆ H ₄	3-O2N-C6H4	Н	Acetone	60 [c]	70	317-319
12	COC ₆ H ₅	napht	h-1,8-diyl [e]	COC ₆ H ₅	Acetone-ethanol	60	38	350
13	COC ₆ H ₅	diphen	diphenyl-0,0'-diyl		Acetone-ethanol	No reaction after 120 minutes [d]		
14	$CO_2C_2H_5$	napht	h-1,8-diyl [e]	$CO_2C_2H_5$	Acetone-ethanol	120	74	185

[a] In isolated pure product. [b] Compounds 9, 10 and 14 were crystallized from ethanol and 11 from methanol-ether. [c] Reaction was carried out at room temperature. [d] Dicarbonyl compound was recovered unchanged in more than 85% yield. [e] Produces phenanthrene ring.

Table 3

Thiazolo[3,2-a]pyridinium Salts from 3 and 4

$$H_3C$$
 H_3C
 H_3C

Compound	R	R¹	R¹	R²	Solvent	Reaction time (minutes)	Yield (%) [a]	Mp (°C, dec) [b]
15	COC ₆ H ₅	CH ₃	CH ₃	Н	Acetone	30	74	274-276
16	COC,H,	C ₆ H ₅	C ₆ H ₅	H	Acetone	20	22	328-331
17	COC,H,	3-O2N-C6H4	3-O ₂ N-C ₆ H ₄	H	Acetone	105 [c]	55	261-263
18	COC,H,	napht	h-1,8-diyl [d]	COC ₆ H ₅	Acetone-ethanol	30	38	314-317
· 19	CO ₂ C ₂ H ₅	napht	h-1,8-diyl [d]	CO ₂ C ₆ H ₅	Acetone-ethanol	50	62	210

[a] In isolated pure product. [b] Crystallization from ethanol. [c] Reaction was carried out at room temperature. [d] Produces phenanthrene ring.

Table 4
Thiazolo[3,2-a]pyridinium Salts from 5

$$\begin{array}{c|c} S & CH_3 & O & R^1 \\ & & & \\$$

Compound	R	R¹	R¹	R²	Solvent	Reaction time (minutes)	Yield (%) [a]	Mp (°C, dec) [b]
20 21 22	COC ₆ H ₅ COC ₆ H ₅	C ₆ H ₅ 3-O₂N-C ₆ H ₄ diphen	C ₆ H ₅ 3-O₂N-C ₆ H ₄ yl-o,o'-diyl	Н	Acetone Acetone Acetone	No reaction after 12 120 No reaction after 12	23	322-325
23	COC,H,	napht	h-1,8-diyl [d]	COC,H,	Acetone	60	25	> 350

[a] In isolated pure product. [b] Compound 21 crystallized from ethanol-ether and 23 from ethanol-water. [c] Dicarbonyl compound was recovered unchanged in more than 85% yield. [d] Produces phenanthrene ring.

Table 5

Benzothiazolo[3,2-a]pyridinium Salts from 7 and 8

Compound	R	R¹	R¹	R²	Solvent	Reaction time (minutes)	Yield (% [a]	Mp (°C, dec) [b]
24 25 26 27 28	$\begin{array}{c} COC_6H_5\\ CO_2C_2H_5\\ COC_6H_5\\ COC_6H_5\\ COC_2C_2H_5 \end{array}$		C ₆ H ₅ C ₆ H ₅ 3-O ₂ -C ₆ H ₄ n-1,8-diyl [d] h-1,8-diyl [d]	H COC ₆ H ₅ H	Ethanol Ethanol Ethanol Ethanol Ethanol	No reaction after 2 No reaction after 2 180 240 240		315-318 > 350 > 350

[a] In isolated pure product. [b] Compound 26 crystallized from ethanol and 27, 28 from acetic acid. [c] Dicarbonyl compound was recovered unchanged in more than 85% yield. [d] Produces phenanthrene ring.

Table 6

Pirrolo[2,1-b]thiazoles from Intramolecular Cyclization of 1, 3, 5 and 7

$$R_{A}^{5}$$
 R_{A}^{5}
 R_{A}^{5}

Compound	R ⁴	R ⁵	Reaction time (minutes)	Yield (% [a]	M,p (°C) [b]	Lit Mp (°C) [c]
29	CH ₃ CH ₃ C ₆ H ₅ -(CH=	H	180	71	70-71	71
30		CH ₃	120	97	122-133	120
31		H	50	79	142-143	—
32		= CH) ₂ -	240	66	125-127	127-129

[a] In isolated pure product. [b] Crystallization from ethanol. [c] Compound 29 described in ref [18], 30 in [19] and 32 in [20].

with yields from 66-97% (Table 6). Novel compound 31 is described in the experimental.

Microanalytical and spectroscopic data of the compounds 1-28 are presented in Table 7.

EXPERIMENTAL

The melting points were determined in open capillary tubes and are uncorrected. Spectra were recorded with a Perkin Elmer 1310 grating ir spectrophotometer and with a Bruker WP 60 CW (60 MHz) ¹H nmr spectrometer. The 1,2-dicarbonyls were either from commercial sources or prepared from previously described methods as 3,3'-dinitrobenzil [11]. 2,4-Dimethylthiazole, 2,4,5-trimethylthiazole [12], 2-methyl-5-phenylthiazole [13] and 2-methylbenzothiazole [14] were also prepared by literature methods.

General Procedure for Preparation of 3-Substituted 2-Methylthiazolium Salts (Table 1, Compounds 1-8).

A mixture of the corresponding thiazole (0.02 mole) and the halide

(0.022 mole) was stirred at 50° (75° for compound 5) in a water bath for the time indicated in Table 1. The salt was filtered off as a white powder and washed with ether. Finally, it was crystallized from ethanol-ether.

General Procedure for the Preparation of Thiazolo[3,2-a]pyridinium Salts (Tables 2-5, Compounds 9-28).

To a mixture of the corresponding 2-methylthiazolium salt (1.5 mmoles), and the 1,2-dicarbonyl (1.5 mmoles) suspended in 15 ml of the solvent, as described in Tables 2-5, 0.16 g of triethylamine (1.6 mmoles) was added. Reflux was maintained for the time indicated. A precipitate appeared which was filtered, triturated with 3 ml of water and crystallized as described.

3,6-Diphenylpirrolo[2,1-b]thiazole (29).

To 1.12 g of 3-benzoylmethyl-2-methyl-4-phenylthiazolium bromide 5 (3 mmoles) suspended in 30 ml of ethanol, 0.32 g of triethylamine (3.22 mmoles) were added, and the mixture was refluxed for 50 minutes. Then, it was concentrated to the half of its volume, cooled to 0°, and the solid precipitate was filtered and crystallized from ethanol, yield 79%, mp 142-143°; ir (bromoform): 1595, 1480, 1455, 1435, 1390, 1280, 1060,

Table 7

	Analytical and Spectroscopic Data from Compounds 1-28								
Compound	Molecular				(Bromof		'H-NMR		
	formula	Found (%	%)/Requ	ired (ν [cm-1		δ [ppm]	
	(Mw)	C	Н	N		•		. 41 7	
1	C ₁₉ H ₁₄ BrNOS	49.78	4.74	4.56	2900, 167	5, 1600.	1580.	2.40 (s, 3H), 2.93 (s, 3H), 6.42 (s, 2H), 7.5-7.8 (m, 3H), 7.96	
	(312.2)	50.00	4.52		1450, 122		,	(s, 1H), 8.0-8.3 (m, 2H)	
2	C ₉ H ₁₄ BrNO ₂ S	38.66	5.44		1760, 156		1350	1.25 (t, 3H), 2.50 (s, 3H), 3.03 (s, 3H), 4.30 (q, 2H), 5.58	
	(280.2)	38.58	5.04	5.00	,	, ,		(s, 2H), 8.00 (s, 1H)	
4	C ₁₀ H ₁₆ BrNO ₂ S	40.93	5.78	5.03	2900, 173	0, 1595,	1425	1.20 (t, 3H), 2.33 (s, 3H), 2.45 (s, 3H), 2.95 (s, 3H), 4.20	
	(294.2)	40.82	5.48	4.76	1360, 127	0, 1205		(q, 2H), 5.50 (s, 2H)	
5	C ₁₈ H ₁₆ BrNOS	57.38	4.62	3.89	2900, 168	0, 1590,	1570	3.10 (s, 3H), 6.20 (s, 2H), 7.3-8.1 (m, 10H), 8.30 (s, 1H)	
	(374.3)	57.76	4.31	3.74	1470, 144	0, 1335,	1220		
9	$C_{10}H_{12}BrNS$	46.11	5.05	5.21	1610, 145	0, 1375,	1290	2.62 (s, 3H), 2.67 (s, 3H), 2.80 (s, 3H), 7.75 (s, 1H), 8.28	
	(258.2)	46.51	4.69	5.42				(s, 1H), 8.72 (s, 1H)	
10	$C_{20}H_{16}BrNS$	62.67	4.29	3.26	2900, 160	0, 1450,	1425	2.86 (s, 3H), 7.35 (s, 10H), 7.90 (s, 1H), 8.50 (s, 1H), 8.86	
	(382.3)	62.83	4.22	3.66	1375, 128	5		(s, 1H)	
11	$C_{20}H_{14}BrN_3O_4S$	50.51	3.00	8.66	1615, 151	5, 1480,	1450	2.93 (s, 3H), 7.69 (s, 4H), 8.02 (s, 1H), 8.34 (s, 4H), 8.75	
	(472.3)	50.86	2.99	8.90	1340, 130	0		(s, 1H), 9.15 (s, 1H)	
12	$C_{25}H_{16}BrNOS$	64.98	3.71	3.24	2920, 165	5, 1605,	1585,	2.62 (s, 3H) 7.3-7.4 (m, 12H), 8.90 (s, 1H)	
	(458.4)	65.44	3.52	3.06	1420, 123	5, 1220			
14	$C_{21}H_{16}BrNO_2S\cdot 2H_2O$	54.13	4.22	2.93	2880, 171	0, 1605,	1420	1.63 (t, 3H), 2.87 (s, 3H), 4.93 (q, 2H), 7.5-8.3 (m, 7H),	
	(462.4)	54.55	4.36	3.03	1360, 130	0, 1280,	1230	8.67 (s, H)	
15	$C_{11}H_{14}BrNS$	48.38	5.48	4.83	2900, 161	5, 1465,	1430,	2.58 (s, 3H), 2.67 (s, 9H), 8.15 (s, 1H), 8.60 (s, 1H)	
	(272.2)	48.53	5.18	5.15	1380, 127	5			
16	$C_{21}H_{18}BrNS$	63.29	4.78	3.47	2900, 161	5, 1455,	1385,	2.73 (s, 6H), 7.30 (s, 10H), 8.38 (s, 1H), 8.75 (s, 1H)	
	(396.3)	63.64	4.58	3.53	1220				
17	$C_{21}H_{16}BrN_3O_4S\cdot 2H_2O_4$		3.30		2890, 161		1480,	2.78 (s, 3H), 2.82 (s, 3H), 7.5-7.8 (m, 4H), 8.1-8.4 (m, 4H),	
	(504.3)	50.01	3.60	8.33	1450, 133	0		8.65 (s, 1H), 9.05 (s, 1H)	
18	C ₂₆ H ₁₈ BrNOS	65.86	3.86		2940, 165		1590,	2.50 (s, 3H), 2.60 (s, 3H), 7.4-8.5 (m, 11H), 8.92 (s, 1H)	
	(472.4)	66.10	3.84		1420, 125				
19	$C_{22}H_{18}BrNO_2S$	59.68	4.25		1730, 160			1.60 (t, 3H), 2.70 (s, 3H), 2.73 (s, 3H), 4.80 (q, 2H), 7.6-8.5	
	(440.3)	60.00	4.12		1300, 124			(m, 6H), 8.80 (s, 1H)	
21	$C_{25}H_{16}BrN_3O_4S$	55.86	3.05		1610, 151	5, 1450,	1340,	7.72 (s, 8H), 7.92 (s, 1H), 8.1-8.7 (m, 5H), 8.85 (s, 1H), 9.05	
20	(534.4)	56.18	3.02	7.86				(s, 1H)	
23	C ₃₀ H ₁₈ BrNOS	68.88	3.61		2885, 166		1415,	7.4-8.6 (m, 17H), 9.10 (s, 1H)	
07	(520.4)	69.24	3.49		1250, 122				
26	$C_{23}H_{14}BrN_3O_4S$	53.95	2.97		1620, 152		1345,	7.4-8.4 (m, 12H), 8.80 (s, 1H), 9.88 (s, 1H)	
97	(508.3)	54.34	2.78		1305, 127				
27	C ₂₈ H ₁₆ BrNOS	68.09	3.20		2880, 165		,	7.4-8.6 (m, 15H), 9.10 (s, 1H)	
00	(494.4)	68.02	3.26		1410, 131				
28	$C_{21}H_{12}BrNS$	64.19	3.12		2880, 170		1405,	7.2-8.3 (m, 11H), 9.30 (s, 1H)	
	(390.3)	64.62	3.10	3.59	1270, 120	U			

1015, 810, 760, 740, 715 cm⁻¹; pmr (hexadeuteriodimethylsulfoxide): δ 7.08-7.90 (m, 12H), 6.73 (s, 1H) ppm.

Anal. Calcd. for C₁₃H₁₄BrNOS: C, 50.00; H, 4.52; N, 4.49. Found: C, 49.78; H, 4.74; N, 4.56.

Acknowledgements.

Financial support from Comision Asesora de Investigación Cientifica y Técnica (C.A.I.C.Y.T., plan 1099) is gratefully acknowledged.

REFERENCES AND NOTES

- [1] O. Westphal, K. Jahn and W. Heffe, Arch. Pharm., 294, 37 (1961).
- [2] Dr. A. Wander A.G. British Patent 916,507, Jan. 23 (1963); Chem. Abstr., 59, 3900 (1963).
- [3] Dr. A. Wander A-G, Swiss Patent 417,601, Feb. 15 (1967); Chem. Abstr., 67, 90696 (1967).
- [4] F. Krohnke, H. Schnegelberg and W. Weis, Chem. Ber., 97, 3566 (1964).
 - [5] T. H. Hough and G. Jones, J. Chem. Soc. (C), 1082 (1968).
- [6] C. R. Costin, U. S. Patent 4,046,766, Sept. 6 (1977); Chem. Abstr., 87, 152907 (1977).

- [7] G. Gonzalez Trigo, M. E. Fombella, J. Alvarez-Builla, B. del Castillo, A. Garcia de Marina and S. Avila, An. Quim., 77C, 225 (1981).
- [8] J. Alvarez-Builla, G. Gonzalez Trigo, J. Ezquerra and M. É. Fombella, J. Heterocyclic Chem., 22, 681 (1985).
- [9] J. Ezquerra and J. Alvarez-Builla, J. Heterocyclic Chem., submitted.
- [10] O. Westphal and A. Joos, Angew. Chem., Int. Ed. Engl., 8, 74 (1969).
 - [11] B. Kelein, J. Am. Chem. Soc., 63, 1474 (1941).
 - [12] R. P. Kurjy and E. V. Brown, J. Am. Chem. Soc., 74, 5778 (1952).
 - [13] J. P. Wetherill and R. M. Hann, J. Am. Chem. Soc., 56, 970 (1934).
 - [14] A. W. Hofmann, Ber., 13, 1230 (1887).
- [15] V. K. Kibirev and F. S. Babichin; Ukr. Khim. Zh., 30, 488 (1964); Chem. Abstr., 61, 5629 (1964).
- [16] C. T. Bahner, D. Pickeris and D. Bettisbales, J. Am. Chem. Soc., 70, 1652 (1948).
- [17] I. Ciociou, C. H. Budeanu and I. Zugravesku, Bul. Inst. Politech. Issi, Sect. 2, 24, 109 (1978).
- [18] H. Kondo and F. Nasagawa, J. Pharm. Soc. Japan, 57, 308 (1937).
- [19] T. Pyl, H. Gille and A. Nusch, Ann. Chem., 676, 139 (1964).
- [20] F. Krohnke and R. Friedrich, Chem. Ber., 96, 1195 (1963).